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Diffie-Hellman Key Exchange

• First published public-key algorithm

• It is a practical method for public exchange of a 
session secret key; and it is limited to this purpose.

• It enables two users to securely exchange a key that
can then be used for subsequent symmetric encryption
of messages

• Its effectiveness depends on the difficulty of
computing discrete logarithms.

• It is used in a number of commercial products 
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Figure 10.1  Diffie-Hellman Key Exchange
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Diffie-Hellman Example

➢ Suppose Alice and Bob wish to exchange a session secret key:

➢ They agree on prime q=353 and a=3

➢ They select random secret keys:

• Alice chooses xA=97, Bob chooses xB=233

➢ Then, the respective public keys are:

• yA=3
97 

mod 353 = 40 (Alice)

• yB=3
233

mod 353 = 248 (Bob)

➢ The shared session key can be computed as:

• KAB= yB

xA mod 353 = 248
97

= 160 (Alice)

• KAB= yA

xB mod 353 = 40
233

= 160  (Bob)
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Exercise 1

➢ Two users A and B use the Diffie-Hellman key exchange 

technique with a common prime q=17 and a primitive root 

a=5. If A's private key XA = 4, and B's a private key XB=2. 

What is the value of the shared secret key? 
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 Figure 10.2  Man-in-the-Middle Attack
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Diffie-Hellman
Man-in-the-Middle Attack
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Suppose Alice and Bob wish to exchange keys, and Darth is the adversary. The 

attack proceeds as follows: 

1.Darth prepares for the attack by generating two random private keys XD1 and 

XD2 and then computing the corresponding public keys YD1 and YD2

2. Alice transmits YA to Bob. 

3. Darth intercepts YA and transmits YD1 to Bob. Darth also calculates K2 = (YA  

)^ XD2 mod q  

4.Bob receives YD1 and calculates K1=(YD1 )^ XB mod q

5.Bob transmits YB to Alice. 

6.Darth intercepts YB and transmits YD2 to Alice. Darth calculates K1=(YB )^ XD1  

mod q

7.Alice receives YD2 and calculates K2=(YD2 )^ XA mod q . 

  



Diffie-Hellman
Man-in-the-Middle Attack
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At this point, Bob and Alice think that they share a secret key, but instead Bob 

and Darth share secret key K1 and Alice and Darth share secret key K2. All 

future communication between Bob and Alice is compromised in the following 

way:   

1.Alice sends an encrypted message M: E(K2, M).  

2.Darth intercepts the encrypted message and decrypts it, to recover M.  

3.Darth sends Bob E(K1, M) or E(K1, M'), where M' is any message. In the first 

case, Darth simply wants to eavesdrop on the communication without altering 

it. In the second case, Darth wants to modify the message going to Bob.   

The key exchange protocol is vulnerable to such an attack because it does not 

authenticate the participants. This vulnerability can be overcome with the use 

of digital signatures and public-key certificates.



ElGamal Cryptography

© 2020 Pearson Education, Inc., Hoboken, NJ. All rights reserved. 

➢ ElGamal Public-key scheme based on discrete logarithms closely 

related to the Diffie-Hellman technique.

➢ It is used in the digital signature standard (DSS) and the S/MIME e-

mail standard. 

➢ It uses exponentiation in a finite (Galois) with security based 

difficulty of computing discrete logarithms, as in Diffie-Hellman.

➢ Global elements are a prime number q and a which is a primitive 

root of q 

➢ Each user (eg. Alice) generates the keys:

• Alice chooses a secret key (number): 1 < xA < q-1

• She computes the corresponding public key: yA = a
xA mod q



ElGamal Cryptography
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➢ If Bob wants to encrypt a message to send it to Alice, he should:

• represent message M in range 0 <= M <= q-1

✓ longer messages must be sent as blocks

• chose random integer k with 1 <= k <= q-1

• compute one-time key K = yA

k
mod q

• encrypt M as a pair of integers (C1,C2) where

• C1 = a
k

mod q ; C2 = KM mod q

➢ Alice then recovers message by

➢ recovering key K  as K = C1

xA mod q

➢ computing M as M = C2 K-1 mod q

➢ a unique k must be used each time

➢ otherwise result is insecure



ElGamal Cryptography
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➢ Using field GF(19) q=19 and a=10

➢ Alice computes her key:

• Alice chooses xA=5 and computes yA=10
5 

mod 19 = 3

➢ Bob sends a message M=17 as (11,5) by

• choosing random k=6

• computing K = yA

k
mod q = 3

6
mod 19 = 7

• computing C1 = a
k

mod q = 10
6

mod 19 = 11; 

• C2 = KM mod q = 7.17 mod 19 = 5

➢ Alice recovers original message by computing:

• recover K = C1

xA mod q = 11
5 

mod 19 = 7

• compute inverse K-1 = 7-1 = 11

• recover M = C2 K-1 mod q = 5.11 mod 19 = 17
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Global Public Elements 

 

 q prime number  

 a a < q and a a primitive root of q 

 

 

 

Key Generation by Alice 

 

 Select private XA XA < q – 1  

 Calculate YA YA = a
XA mod q 

 Public key {q, a, YA }   

 Private key XA 

 

 

 

Encryption by Bob with Alice's Public Key 

 

 Plaintext: M < q 

 Select random integer k k < q 

 Calculate K K = (YA)k mod q 

 Calculate C1 C1 = a
k
 mod q 

 Calculate C2 C2 = KM mod q 

 Ciphertext: (C1, C2) 

 

 

 

Decryption by Alice with Alice's Private Key 

 

 Ciphertext: (C1, C2) 

 Calculate K K = (C1)
XA mod q 

 Plaintext: M = (C2K–1) mod q 

 

 

Figure 10.3  The ElGamal Cryptosystem 
 



Exercise 2

➢ Suppose user A who want to send user B an encrypted 

message M = 8 using ElGamal Message Exchange 

algorithm with a prime q = 23 and primitive root a=5. If B’s 

public key YB=3, and A choses a random integer k=3. 

a) What is the encryption pair (C1, C2)? 

b) How does user B recover the message?
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Summary

• Define Diffie-
Hellman Key 
Exchange

• Understand the 
Man-in-the-middle 
attack

• Present an overview of 
the Elgamal 
cryptographic system
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